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Context
Today, 3-dimensional (3D) image sequences are used in many scientific fields, including materials science, medicine
and biology. A challenge with such spatio-temporal 3D images is to automatically detect the structural changes
(of objects) in the 3D images over time. For instance, in materials science, geomecanicians are interested in
studying kinematics of an assembly of particles for modeling complex material deformations, such as shear bands.
The experimental approach combined with X-ray 3D computed tomography (CT) imaging allows them to acquire
sequences of 3D scans of such material deformation (see Fig. 1 for a shear band case), where they study how
contacting particle network evolves [1, 2].

Figure 1: Cross-sections of 3D CT images at different times from a sequence of a deformed cylindrical sand sample,
acquired during the triaxial compression test that induces a shear band.

Objectives
Among various types of changes occurring in 3D image sequences, we focus on the issues of topological changes,
which underlie other geometric information. These topological issues in image analysis are crucial: understanding
the topology of objects in images and their evolution over time is a desirable property in many image processing
applications. These topological questions have received little attention to date. We aim to quantify topological
properties and to propose new methods that best detect such topological changes.

To our knowledge, 4-dimensional (4D, i.e. 3D+time) images are rarely considered. In particular, it is difficult to
use deep learning paradigms due to the memory requirements induced by the huge size of the data and the paucity
of available (annotated) 4D datasets. Recently, pioneering work has been done on how to generate data for various
simple topological shapes and how to learn 4D topological features using them [3]. Certainly, the generated data
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are far from being real images such as those shown in Fig. 1. Besides, 4D geometric and topological information is
not usually taken into account in analysis of 3D image sequences; indeed, the time dimension is generally ignored,
or only two consecutive images are considered. However, the benefit of taking 4D topology into account has been
demonstrated, for example, in segmentation of 4D cardiac images [4]; a 3D object that deforms over time can be
seen as a 4D (3D+time) object, which leads to a topological constraint in 4D. In the same way, rigid 3D particles
that move over time, as in Fig. 1, can be seen as tubes in 4D. Then, the evolution of the network of 3D particles in
contact can be interpreted as the way in which these 4D tubes intertwine. Our question will therefore be how to
measure the topological complexity of these 4D interlaced tubes.

These issues, considered here in the applicative context of materials science, also occur in other context. This is
especially the case in biological imaging, for instance in the quantitative assessment of living cells evolution in 2D
images [5] or in modeling the evolution of vascular microstructures in very high resolution 3D synchrotron images
[6] where one of the dimensions can be seen a pseudo-time dimension due to strong continuity.
State of the art
Topology is the branch of mathematics that studies the properties of geometrical objects preserved under continuous
deformation without tearing or gluing. Various topological descriptors and invariants for objects exist, among which
Betti numbers bk (for nD, the number of connected components b0 and the number of kD holes bk, k = 1, . . . , n−1)
are simple ones. The frameworks of digital topology [7] and of cubical complexes [8] allow us to compute those
Betti numbers for binary images. With respect to gray images, persistent homology [9], which has been recently
popularized and extensively used in various fields to study the shape and structure of data, allows us to define
persistent Betti numbers for gray images [10], but also to observe the evolution of the homology groups over
the grey-levels. However, these numerical or vectorial descriptors do not offer enough information for detecting
topological changes in an image sequence. If some Betti numbers / homology groups vary along the sequence,
this ensures that there exist some topological changes in the sequence while this does not tell where we can find
them in the images. Besides, it is also well known that maintaining these numerical or vectorial descriptors in a
discrete sequence does not even guarantee topological equivalence. This information loss is an obstacle to analyzing
spatio-temporal images.

In order to overcome this shortcoming, tree-structural topological descriptors/invariants based on mathematical
morphology [11], which are adapted for modeling not only binary but also gray images in higher dimensions, are
commonly used for characterizing topological changes:

• adjacency tree for binary images [12];

• component tree (max-tree and its dual, min-tree) for gray images [11], also called merge trees [13] in topological
data analysis;

• tree of shapes [14], which is a tree of object boundaries in an image, seen as a hierarchical structure containing
the information of both max- and min-trees, also called contour tree [15] in topological data analysis.

In this line, the topological tree of shapes, which is based on the tree of shapes, married with digital topological
concept with the aim of topological simplification, has been introduced recently [16], with reasonable computational
time for its construction [17] via efficient construction of tree of shapes [18]. Based on these properties, it may
constitute a relevant starting point of this thesis.

In order to quantify topological differences by using above hierarchical representations, distance between trees are
necessary. Various such distances already exist. One can cite, non-exhaustively, tree edit distances [19], interleaving
distance between merge trees [20], Gromov-Haussdorff distance between metric trees [21], Wasserstein distance
between merge trees [22], optimal transport distance on a tree metric [23], and their variations. However, those
distances do not take into account image-related information carried by each node (for example, region similarity
based on region size, shape, position, intensity, etc.) even though the structure of tree of shapes is richer than a
simple tree. In this context, a new distance between trees of shapes by measuring image-related similarity between
nodes using the Hausdorff distance has been proposed [24]. Similarity measures should depend on applications we
consider.
Issues and challenges
The objective of this thesis will be to develop methods and tools to characterize and quantify the topological changes
of 4D spatio-temporal grayscale images. As we note that the initial work has been made, such as topological tree
of shapes [16], we will first explore its capacity for topological measures, inspired by the distance based on the
node matching from Hausdorff distance [24]. We aim at compensating the weaknesses inherent to the measure by
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revisiting some approaches of mathematical morphology [11], digital topology (for grayscale images in particular)
[25] and topological data analysis [9].

Beforehand, the first issue we need to address is how to simplify the generated tree as a topological description
of a given image (sequence). In fact, it is observed that a generated tree generally contains many nodes, when each
pixel/voxel has a different value from its neighbors. This can be seen as “topological noise”, so we should remove
insignificant nodes to simplify the tree, so that it contains only meaningful information. In other words, we need
to define what “topological noise” is to proceed topological denoising. Removing nodes of component trees is easy
(elements of a removing node joining its parent), so that various region-based morphological filtering techniques,
called connected operators, exist [26]. They have good contour-preserving properties such that they cannot create
new contours nor modify their position. However, removing nodes of tree of shapes is not as simple as component
trees; a solution for this problem has been proposed recently [27] as a sequence of elementary operations. This idea
may help us to ensure correct topological denoising for 4D spatio-temporal images.

The second issue is how to treat tunnels (kD holes where k = 1 for 3D and k = 1, 2 for 4D) with tree-structural
topological descriptors. In the case of 3D binary images, the idea of adding the tunnel information as the weight of
an edge of the adjacency tree has been introduced [28]. It is a very ambitious challenge if we can extend this idea
to 4D grayscale images.

Course of the thesis
We will first explore the problem in three dimensions (or “2D+t”) and then in four dimensions (“3D+t”), which is
an ambitious challenge as many problems still remain open in this framework. The thesis consists of the following
three steps:

1. Theoretical aspects: as mentioned above, we choose the topological tree of shapes [16] as a topological
descriptor which is a relevant starting point. We will explore its capacity for topological measures, inspired
by the distance based on the node matching based on Hausdorff distance [24]. Topological image denoising
based on this tree, which generally corrupts the tree structure, is also necessary prepossessing for its practical
use. Equipped with these tools for quantifying topological changes, we will then focus on the development of
topological change detection methods, with minimizing “topological noise”.

2. Computational aspects: analyze and improve the computational efficiency of our method for topological
change detection from a 4D image using the hierarchical topological descriptor, and also to measure the
topological difference between two images. One of the key issues will be how to use the tree structure for
efficient computation. On a technical level, there are already several computational tools for each domain, for
example:

• for discrete topology: DGtal, Pink

• for topological data analysis: Gudhi, TTK

• for mathematical morphology: HIGRA

A new tool (or module) will be developed (or added) by relying on these tools.

3. Application aspects: the proposed concepts will be validated in the applicative context of geomecanics in
collaboration with Gioacchino Viggiani (Laboratory 3SR, Grenoble) and Edward Ando (Center of Imaging,
EPFL) who provide 3D CT image sequences, as shown in Fig. 1. Their interest is to characterize the evolution
of contacting particle network, i.e. kinematics of particles. The applicative challenge of this thesis is to obtain
related topological and geometrical informations [29] from the 4D spatio-temporal images efficiently and
precisely by using morphological hierarchies based on the above theoretical and computational studies.

Expected results
Topological data analysis is now popular and used in various fields of data science. The subject of this thesis is
very ambitious, since we aim to deal with 4D images, which are very large and rarely treated so far. The thesis
also includes theoretical and computational aspects with attractive applications with real data, which provide many
interesting open questions.
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Profile
We are looking for a highly motivated candidate who holds (will hold) a diploma of Master/engineering in computer
science or applied mathematics. Candidates should be comfortable with programming in C++ and python.

Application
To apply, email the supervisors a dossier containing a CV, covering letter, transcripts of the last two years of study,
and possibly letters of recommendation or reference names.
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